
Developments in Class Inheritance and Method

Selection

John M. Chambers

June 2, 2009

This paper describes some recent developments in the R mechanisms for
defining new classes and for selecting methods. The overall goal is to provide
more flexible, unified and consistent use of these programming tools. Most of
the changes relate to combined use of S4 classes, S3 classes and basic object
types. In particular, modifications allow the use of both S3 classes and all
basic object types as superclasses contained in new S4 classes. The S3 method
selection mechanism has also been adapted for objects from S4 classes. Tests for
inheritance (the is() and inherits() functions) have been made aware of both
class mechanisms. Within the S4 class and method model itself, a consistent
ordering of superclasses and a criterion for unambiguous selection of methods
are imposed, when possible.

1 The Starting Point

The developments described in this paper form the main extensions of the R
class and method mechanism since mid-2008 (starting with version 2.8.0 of R),
and can be read as an update to the discussion in Chapters 8 and 9 of Chambers
(2008). This section summarizes the implementation of class representation
and method selection as of version 2.7.0 of R. In the remainder of the paper,
developments in these areas are summarized. Sections 2 to 4 discuss extensions
to class definition to inherit from S3 classes and arbitrary object types, and to
select from mixtures of S3 and S4 methods. These sections contain the new
programming features you may want to use. The remaining sections describe
internal changes in S4 class and method definitions to provide a more explicit
and consistent selection. Those concerned with packages that have complicated
or extensive patterns of class inheritance should understand the rules; otherwise,
the material is mainly intended as part of the R system definition.

S4 objects—that is, objects generated by a call to new() for an S4 class—are
represented internally by the same C structure as all R objects. They can be
distinguished in either R or C programming by checking a special bit in the
structure, by calling the R function isS4() or the C macro IS S4 OBJECT().

As with other R objects, the interpretation of the data in the object is con-
trolled by the type field of the structure (typeof() or TYPEOF()). A specific

1

type, "S4", is used for general S4 objects. However, if a class definition con-
tains, directly or indirectly, one of the basic object types such as "numeric"
or "function", one of the pseudo-classes "matrix" or "array", or the virtual
class "vector", then the type of the S4 object is determined by the inherited
basic type or by the data supplied when the specific object is created. To give
three simplistic examples:

setClass("c1", contains = "character")

x <- new("c1", "Testing")

setClass("c2", contains = "matrix")

x <- new("c2", matrix(0.5, 3, 4))

setClass("c3", contains = "vector")

x <- new("c3", (1:10) > 5)

The type of x in the three examples will be "character", "numeric", and
"logical".

The basic types that can be inherited directly are limited to those that are
treated as normal R objects, in the sense that they are duplicated on request, to
prevent side-effects from functional computations. Certain object types are not
duplicated and these can not be used directly to represent S4 objects; the types
"environment", "externalptr" and "name" (symbol) are examples. Because
objects of these types are not duplicated, slots or attributes cannot be added to
them without the side effect of appearing in all instances of the object. For this
reason, such object types were prohibited as superclasses in S4 class definitions.
A goal of recent changes has been to allow these object types as superclasses by
an indirect mechanism, while retaining "S4" as the object type.

The online R documentation (as well as the discussion in Chambers (2008))
also discouraged programmers from defining classes that contained S3 classes.
S3 classes have no formal definition with respect to content but can and should
be registered via a call to setOldClass(). Once registered, they can appear
formally anywhere a class name is specified—as a slot in a definition, as part
of a method signature or as a superclass. The last use was not well supported.
S4 computations would interpret an object from such a class as inheriting from
the S3 class, but S3 method selection, for example, would not recognize the
inheritance. Even if selected, the S3 methods would not recognize the object,
meaning that computations using the class information directly could fail. Also,
computations that copied and changed the object would quite likely create an
invalid object from the S4 class. A second goal of the changes was to make S3
superclasses work as well as possible, in particular to have S3 method selection
aware of the superclasses and to supply an object to the selected method that
was more likely to be treated as a legitimate object from the S3 class.

Class inheritance also influences programming through its use in selecting
a method for a function call based on the classes of the arguments. In all
languages with such method selection, the goal is to choose a method either
directly defined for the classes supplied or, if no such method exists, one defined
for as “close” a combination of classes as possible. Method selection in the
S4 system in R is relatively complicated for two reasons. R allows multiple

2

inheritance, so that the actual class may inherit superclasses from more than
one direct superclass. And, being a functional language, R naturally supports
multiple dispatch, that is, selection of a method based on the class of more than
one argument. Both of these lead to some ambiguities about the best selection,
which recent developments have tried to reduce.

2 Inheritance from S3 Classes

The S3 class and method software dates back to the work on statistical models
in S (Chambers and Hastie, 1992) and to early versions of R. Technically, the
software implements an instance-based object system, in that methods are se-
lected by looking at the character strings in class(x) for an individual object x,
without requiring that any of these corresponds to a class definition from which
x was created. Merging S3 class software with formal classes and methods is
therefore an unpredictable activity. Programmers can use class strings in arbi-
trary ways, and have done so. The original introduction of the S4 model came
with the hope that the major applications using S3 classes would be converted,
as assumed in Appendix B of Chambers (1998), for example.

A decade later, there is instead a much larger body of software using S3
classes, most of which is unlikely to migrate to formal classes and methods. To
build on this software while using more modern tools needs a mechanism to
deal with S3 classes and methods in a reasonably general and convenient way.
The developments described in this section attempt to move towards such a
mechanism. S3 classes can be registered, including their S3 inheritance patterns,
assuming they have such patterns consistently. Optimists may even define the
effective slot structure of the class, again assuming that makes sense (examples
are discussed below). S4 class definitions can extend registered S3 classes, as well
as specifying them as slots or in method signatures. Changes to the internal R
software are gradually attempting to manage combinations of S4 and S3 classes
reasonably, in terms of method dispatch and object interpretation.

The base of the mechanism is the registration of the S3 class pattern by a
call to setOldClass():

setOldClass(Classes)

where Classes is the character vector of class names expected in corresponding
objects. For example, "data.frame" registers the single name while c("ordered",
"factor") says that objects are expected having these two strings in this or-
der as their "class" attribute, implying that S3 class "ordered" inherits from
"factor". All the strings will have S4 class definitions as a result, reflecting
the implied inheritance and all extending "oldClass". Optional arguments to
setOldClass() allow for additional information about corresponding objects
and also try to handle some of the inconsistencies that arise. See the documen-
tation, ?setOldClass, for details.

The single-argument call to setOldClass() creates an S4 proxy class that
is virtual, with no information about the contents of objects carrying this class.

3

For some S3 classes, one may assert that the objects contain attributes of known
name and class, which can then be specified as slots, because R implements slots
as attributes (not coincidentally). For example, if we are willing to assert that
all classes of S3 class "data.frame" have type "list" and attributes "names"
and "row.names", and if the attributes themselves can be asserted to be of a
known class, then all data frame objects will be equivalent to objects from a
well-defined S4 class. This will allow us to apply tools to these objects and will
have extended the S3 class in a useful way. This particular example illustrates
typical difficulties however. The list data and the (character) names attribute
are straightforward, but what R expects for the "row.names" attribute has
actually changed over time: originally required to be "character", they can
now be "integer", and are by default. Assuming that this decision will stick for
a while, we have defined a class union containing "character" and "integer",
and specified this as the class for an S4 version of "data.frame".

Not all S3 classes use attributes, however. For example, "lm" and other
classes of fitted models use lists that are asserted to have components of known
name (and sometimes of known class). The current software for registering S3
classes does not provide a formal way to specify components of a list, but that
is a possible future extension.

Any object from a class that extends "oldClass" has a slot ".S3Class",
intended to contain the character vector that should be used as class(x) by
S3 class and method computations. This slot will be found in any object from
a class that extends a registered S3 class. If no other action is taken, the slot
will contain the S3 class or classes implied by the call to setOldClass(). For
special requirements, the slot can be used to pass an arbitrary S3 class down.
For example, some computations use S3 classes inconsistently, so that different
objects apparently from the same main class have different inheritance (see
?POSIXt, for example). While the S4 class must have consistent inheritance,
objects from the class could reflect the differences via the ".S3Class" slot.

3 Inheritance from Object Types

The object types in R have corresponding formal classes (although "numeric"
replaces "double" and "name" is used instead of "symbol", mainly for compati-
bility with S). Formal classes in R have always had the ability to inherit from one
of the types provided that the type behaves “normally”. All the vector types as
well as the types for functions and primitives and type "language" are included.
Not allowed were types such as "environment", "symbol", and "externalptr".
The prohibition followed from the implementation of the inheritance, which in
turn was motivated by making the inheritance useful.

If an S4 class contains a normal object type then objects from the class will
have this type. The following definition for class "cText" defines the object
type "character" as a superclass:

setClass("cText",

contains = "character",

4

representation(count = "integer"))

Objects from class "cText" will have type "character". The utility of this im-
plementation is that computations for standard functions and operators written
for the basic type can be inherited immediately by the new class with no ex-
plicit transformation of the objects. These computations are often implemented
in base C code and so are relatively efficient. The slots of the S4 object, imple-
mented as attributes, may or may not be treated appropriately for the meaning
of the new class. Fairly often they are, but if not the method required to correct
the problem typically uses the base computations and then modifies the result
to suit the class.

However, objects from a class that extends one of the abnormal types can
not have that type precisely because attributes do not work for them, which in
turn results because objects of these types are effectively references to some in-
formation rather than local objects in the standard R and S sense. For example,
an object of type "environment" is a reference to a single internal structure.
Any function that modifies the object by assigning or removing objects from
the environment changes that environment for all functions that are using it.
For type "symbol" the issue is one of efficiency. Any character string used as a
symbol is installed in an internal table, so that symbol equality can be tested
by comparing the reference rather than the contents of the string. If objects
from a class extending one of these types had the same type, then assigning an
attribute (such as the class attribute itself) would overwrite the attribute for
any other “copy” of that object.

Classes containing one of the abnormal types are now implemented by using
a reserved slot name to hold the “data” part, while leaving the actual type
as "S4". The definition of the new subclass can appear just as it would for
extending a normal type; for example,

setClass("datedEnv",

contains = "environment",

representation(lastAssign = "POSIXct"))

Objects from class "datedEnv" can be coerced to "environment", by either S4
or S3 computations. As with classes that contain a normal object type, objects
are eligible for S4 methods that have "environment" in their signature, without
explicit coercion.

The internal computations to pass the object to the method are different
however. Subclasses that are defined by sharing slots or containing a normal
object type are “simple” extensions in R terminology. An object from a simple
subclass of a normal type can usually be passed with no modification to a
method or function that expects an object of that type. The data corresponding
to the type is in the object in the expected form. With a non-simple subclass,
the method dispatch software will explicitly compute an object from the type
and pass this to the selected method.

In addition, the programmer may need to coerce the object by a call to as()
before passing it to a low-level function that expects an object of the corre-
sponding type. For example, if e1 is an object from class "datedEnv", to use

5

it as the envir argument to function exists(), which expects an environment,
the programmer needs to do the coercion:

exists(what, envir = as(e1, "environment"))

In this case, somewhat perversely, if e1 was supplied as the general where
argument rather than the “smarter” choice of the envir argument, the default
expression for envir would evaluate

as.environment(where)

and get the desired answer.
Basic R or C code that expects an object from one of the abnormal types

can be modified simply to work for S4 subclasses with little overhead for non-S4
objects. In a function requiring that object x is of type "environment", for
example, the simplest patch is of the form:

if(isS4(x))

x <- as(x, "environment")

A similar computation applies in C code:

If(IS S4 OBJECT(x))

x = R getS4DataSlot(x, ENVSXP)

Including explicit conversions of such S4 objects has a negligible efficiency
penalty for most applications, since computations are all conditional on testing
the S4 bit in the object. No valid S4 object can be used as an abnormal type
unless it inherits from the corresponding class, meaning that the coercion will
fail as it should for other S4 objects. Depending on the context, the test could
be expanded to give a more informative error message for invalid S4 classes, all
still conditional on the isS4() test.

Much of the base code underlying primitive and internal functions does in
fact include such a test and coercion to the desired object type, with knowledge
of the S4 mechanism.

4 Combining S4 and S3 Methods

Once the notion of combining the two class paradigms is accepted, some strategy
is needed to select and dispatch methods in a mixed situation. This arises in
both directions, defining new (S4) methods for old classes and applying S3
methods to objects from S4 classes. In both cases, the central issue is how
to apply a suitable selection strategy, as well as worrying about whether the
selected method will behave correctly for an object from a “foreign” class.

S4 methods for S3 classes are relatively straightforward, so long as the class
has been registered. The S4 inheritance is defined by the registration, via the
call to setOldClass(). For normal S3 classes that follows the expected pattern;
for example, an object from the S3 class "mts" would match signatures contain-
ing "mts" and "ts" in that order, as with S3 method selection. The major

6

caveat is that S4 inheritance is always consistent, determined by the class defi-
nitions, whereas S3 selection is instance-based. So, for example, S3 objects with
main class "POSIXt" can differ in the second class string and select different S3
methods accordingly. The corresponding S4 class has a conditional inheritance,
but its method selection will not use that information. Some workaround would
be needed, such as noted in (Chambers, 2008, page 369). These cases are rare,
however, and otherwise the approach required is relatively clear.

In the other direction, S3 method selection is instance-based, using the class
attribute of the object to select the best-matching method. Therefore, we have
introduced the S3Class() mechanism, as described in section 2, to define the
classes that should be used for S3 method selection for an S4 object when
appropriate. Appropriate objects include any from an S4 class that contains
an S3 class, as discussed in section 2. Method selection is now reasonably well
supported here, although there are some details to consider, the basic approach
is to set the ".S3Class" slot to match the S3 class contained.

In principle, one might choose to allow S3 methods only for S3 classes, using
the mechanism to apply the methods to S4 objects. There are practical reasons
not to do so, as well as the generally permissive philosophy of R.

Two practical issues are important in this case. First, a number of S3 meth-
ods have been written for S4 classes that have no relationship to S3 classes. The
original S4 design tacitly assumed no one would do this, since it was obvious that
S3 code would know nothing about S4 inheritance. Unfortunately, the chance
to make such definitions illegal slipped by the initial R implementation, partly
because it was not easy at first to identify S4 objects. And, by a fundamental
principle of user-oriented software, if something is possible someone will do it.
So, by the time the problem was recognized, a number of packages had invested
significantly in S3 methods for S4 classes.

Second, the current implementation of R does not recognize S4 methods in
calls that take place directly from the base namespace. Currently this limitation
requires writing S3 methods for S3 generic functions that are called from other
functions in the base namespace. See the example at the end of this section.
The requirement does not apply to primitive functions, which use a uniform
method dispatch mechanism regardless of how they are called.

For these reasons, a mechanism has been provided to register the intention
to write S3 methods for an S4 class when the class is created, by including the
argument S3methods = TRUE in the call to setClass(). With this option, S4
subclasses of that class will also select the corresponding S3 methods for that
class, if no better-matching method exists. The mechanism implementing the
policy is to add the same ".S3Class" slot to the object, but now set to the vector
of eligible S4 classes for method selection, that is, to the value of extends() for
this class. The S3 method selection uses this slot as in the previous case, making
S3 method functions for this class and its superclasses eligible. Also, subclasses
of the class will inherit this slot and so will select S3 methods similarly, but not
for the subclass itself, unless that is also registered by S3methods = TRUE.

What about S4 classes that are not registered and do not extend S3 classes?
The long-term intention is that no non-default S3 methods will be selected for

7

these classes, to avoid accidental conflicts with the S3 naming convention. That
there happens to be, say, a function print.foo() somewhere should not cause
problems for a programmer defining an unrelated S4 class "foo". Restricting
methods to those defined explicitly was an obvious and central part of the S4
design. In the interim, not to break too much existing code, S3 method selection
will still select the method directly for objects from such a class, but not for
objects from its S4 subclasses. Future plans include a tool to detect and report
apparent S3 methods for non-registered S4 classes.

Even if registered, S3 methods for arbitrary S4 classes are somewhat depre-
cated because they can create unintuitive method selections. An S3 method for
a class, even if an exact match or a direct superclass, will fail to be chosen in S4
method selection if there is any candidate S4 method, no matter how indirectly
related, because in the usual situation all S3 methods are chosen by the default
S4 method, typically the previous S3 generic function.

Turning back to methods for inherited S3 classes, method selection should
now work without restrictions, although special cases such as the "POSIXt"
example may need some programmer intervention. The use of a per-object slot
to hold the S3 class information makes the full generality of instanced-based
selection available, provided the programmer takes the step of setting the slot.
The S3 "POSIXt" behavior can be obtained, as long as the programmer uses
the S3Class assignment function to assign the appropriate S3 class for the
individual object; for example,

S3Class(x) <- c("POSIXt", "POSIXlt")

There is another consideration in applying S3 methods however: will the
S3 method work as intended on the S4 object? Usually yes, but some existing
methods have failed. If the method looks directly at the class attribute, for
example, it will not see what it expects. If we don’t trust the methods, the
alternative is to coerce the S4 object to the corresponding S3 class. This is
equivalent to considering the inheritance relationship to be non-simple (Cham-
bers, 2008, page 346). The classes extending abnormal object types discussed
in section 3 are examples for which such coercion is needed. As with any non-
simple superclass, the penalties are some extra computation and more seriously
that the programmer will have to restore any additional information from the
subclass if the method is intended to return an object from the original class.

In the current mechanism, R maintains a table of classes for which explicit co-
ercion will be performed before dispatching a corresponding S3 method. Version
2.9.1 of R sets the table up to include all the S3 classes registered in the methods
package plus the abnormal object types. Future versions are planned to intro-
duce a mechanism to turn conversion on or off, in the call to setOldClass().

One can also combine S3 methods defined directly for an S4 class and S3
inheritance. For example, suppose S4 class "myFrame" extends "data.frame"
and the designer of the class also wants to write an S3 method for "myFrame".
This is allowed, although not recommended. The class must registered by the
S3methods argument, in which case selection should work as expected because

8

the ".S3Class" slot will now contain "myFrame" and its superclasses, including
"data.frame".

As an example requiring an S3 method for an S4 class, suppose we have an
S4 class, "L" say, that has its own method for sort(). The usual technique
would be:

setGeneric("sort")

setMethod("sort", "L",)

This works fine for calls to sort() from the global environment or from any
package importing the S4 method. But suppose someone calls the function
median() on an object from this class. The default method for median() calls
sort() and selects the appropriate order statistics. One might expect this to
work for class "L", but it will not. Because median() is in the base namespace,
the version of sort() that it calls ignores S4 methods. To ensure that median()
and other base functions select the desired method, an S3 version must be
defined. The simplest and clearest technique is usually to define the S3 method
first and then call that from the S4 method. In the example,

sort.L <- function(x, decreasing = FALSE, ...)

setMethod("sort", "L", function(x, decreasing = FALSE, ...)

sort.L(x, decreasing, ...))

5 Superclass Ordering

A formally defined class may have one or more direct superclasses, which can
be specified in three ways:

1. via the contains argument to setClass(), when the class definition is
created;

2. as a member of a class union;

3. via a direct call to setIs().

See (Chambers, 2008, sections 9.3-9.4). In addition, all the superclasses of the
direct superclasses are by definition superclasses of this class as well.

The contains slot in the class definition is a list of objects defining the
relation to each superclass. The ordering of the list is used when selecting an
inherited method (page 11 below). A method defined for a class earlier in the
list of superclasses is preferred.

It’s convenient to speak of the generation of a superclass. The direct su-
perclasses are the first generation, their direct superclasses the second genera-
tion, etc. R stores the generation as the distance slot in each element of the
contains list.

Two principles to guide superclass ordering in R have been (and still are):

9

1. Superclasses that are closer in generation to the main class should appear
closer in the list. That is, direct superclasses should appear before others;
after these, their direct superclasses should appear before others; and so
on.

2. Direct superclasses should appear in the order they appeared in the class
definition. Similarly, superclasses of the first direct superclass should ap-
pear before those of later superclasses, and so on.

R uses these two principles to generate the initial superclass ordering. A list is
computed of the relation to each superclass, by merging the contains slot from
the definition of each of the direct superclasses. This list is sorted by generation,
and since the sort is stable and the superclasses are introduced in the order of
the direct superclasses, the second principle is followed as well. Provided the set
of all superclasses of the direct superclasses has no duplicates, no further action
is needed.

However, the same class can appear in more than one of the superclass lists
of the direct superclasses. The list produced by the initial sorting will then have
some duplicate names (the class extension objects in the list will not generally
be identical). Through version 2.8 of R, uniqueness was not enforced. When
the list was used for method selection, the effect was to pick the first instance of
the superclass that appeared with the smallest generational distance, not always
the desirable solution.

To resolve (when possible) ambiguities from superclasses appearing more
than once, a third principle is invoked:

3. Superclasses should appear in a consistent order; that is, if class "B" pre-
cedes class "C" in the contains list, then it should do so also in the
contains list of any superclass that extends both "B" and "C".

Aside from some intuitive appeal, this principle is desirable to avoid possible
surprises in method selection (see the Appendix, page 14). If there are no
ambiguities, the first two principles as applied in R ensure the third as well.

Starting with version 2.9.0, R removes multiple occurrences of superclasses.
If duplicates can be removed to satisfy the third principle, this will be done. If
not, a warning message reports the inconsistencies remaining. The Appendix
shows examples where consistency is not possible.

One of the few other functional programming languages with multiple in-
heritance and multiple dispatch is Dylan (Shalit, 1996). It has similar rules for
consistent class inheritance, with the differences that it does not use a concept
of generational distance, does not have the whole-object view of class proper-
ties, and takes a less tolerant view of ambiguous inheritance than R. See (Shalit,
1996, pages 54-55) for details.

10

6 Selecting Inherited Methods

The introduction of a consistent superclass ordering has been used to support
a more specific criterion for selecting inherited methods, avoiding some poten-
tial inconsistencies in the previous selection algorithm. The previous algorithm
computed the generational distance between the class of the actual argument
and the corresponding class in the signature of each method for this function.
If more than one argument appeared in the signature, the distances for each
argument were added, and the total distance used as a penalty score for the
candidate methods. In the case of equal scores, the choice was considered am-
biguous, a warning issued and the lexically first of the tied candidates chosen.
See (Chambers, 2008, section 10.6) for examples.

Although this heuristic criterion behaves adequately most of the time, it
has several infelicities. As noted above, the generational distance is not always
meaningful when a superclass can be reached by more than one path. In particu-
lar, the universal superclass "ANY" does not have a generally meaningful distance
from actual classes. Also, the use of distance as a criterion does not take explicit
account of the second principle above, that direct superclasses are ordered by
the order of their appearance (although choosing the lexically first possibility
effectively applies this principle if there are no duplicate superclasses).

With a fixed and, if possible, consistent ordering of superclasses in all cases,
a more explicit set of criteria will be used:

1. For each argument in the signature, the closest defined class is the first
occurring class in the superclass list of the actual argument’s class. The
best matching method(s) are those with that class in their signature for
the argument in question.

2. The best matching method, if any, is a best matching method for all argu-
ments in the signature. If no best method exists, selection is ambiguous.

For functions with only one argument in the signature of the methods, there will
always be a best method. This includes the case that the generic function has
more than one argument in its signature, but all the defined methods only use
one of these arguments. In the one argument case, the method selected will be
the same as with the previous algorithm, but no ambiguities will be reported.

When an ambiguous case occurs, some heuristics are applied to eliminate
some of the candidates. If more than one candidate still remains, the lexically
first candidate is used, which amounts to choosing the first of the best methods
for the first argument in the signature. The following heuristics are applied in
order, exiting when and if only one preferred method remains.

• Methods that qualify by conditional inheritance are eliminated (for ex-
ample, methods defined for class "ts" when the actual class is "mts").
Hopefully, this is a rare occurrence.

• Methods are selected with the least total generational distance between
the target and defined classes (this was the primary comparison before
consistent superclass ordering was enforced).

11

• If some, but not all, candidate methods are from a group generic function,
these are discarded in favor of methods for the specific function.

• Preference is given to exact matches on individual arguments; that is, to
methods whose signature includes the class of one of the corresponding
actual arguments.

The disambiguating function in the methods package signals a condition, which
by default prints a message noting the signature selected, the alternative candi-
dates and any of the above heuristics applied. This action has been downgraded
from a warning in previous versions, since typically it’s the package writer, and
not the user who calls for the method selection, who is responsible for the am-
biguity. (See the next section.)

A different action in response to this condition can be programmed by setting
the option "ambiguousMethodSelection". The option should be set to a calling
handler, that is a function of one argument, which will contain the message.
When the handler function is called in this case, the argument object also has
attributes as discussed in the next section describing the ambiguity.

Detecting Ambiguous Method Selection

Ambiguities in method selection tend to be created by package designers but
detected by package users, who may have done nothing wrong but are often
unnerved by the reported ambiguity. For this reason, the condtion reported has
been downgraded from a warning and phrased in an attempt to just report the
result neutrally.

Even so, it is much more desirable to detect ambiguities during package
design and either eliminate them or at least provide some reassurance to users.
In principle, not all ambiguities arise from a single package; it is quite possible
for two packages to create competing methods neither of which dominates the
other. The majority of ambiguous selection, however, likely arises because a
package creates a set of new classes and corresponding methods for operating
on them in pairs. (Note that the current mechanism, unlike the previous one,
always selects an unambiguous method for functions of one argument, so it’s
only multi-argument selection that matters, typically for operators or functions
with two or more data objects.)

A new function, testInheritedMethods(), has been added to the methods
package to test method selection for the currently known subclasses that are
relevant to the methods for a particular generic function. Normally the call is
simply:

testInheritedMethods(f)

where f is a generic function or its character string name. The value returned is
an object from the class "MethodSelectionReport". This has a slot reporting
all the results of the method selections, plus slots reporting the results of any
ambiguities found. A show() method for the class itemizes all these ambiguities.

12

It’s important when calling testInheritedMethods() to have attached any
packages that contain relevant methods or classes. This should include of course
any packages with methods for f() but also any software that defines relevant
subclasses extending those for which such methods are defined.

The rest of this section examines the computations involved, the results
reported, and the question of what action might be taken by package designers.
To look at examples in practice, we will use the Matrix package, which has a very
rich set of classes and methods. I hasten to add that this is not to pick on or
criticize the package. The package design introduces a wide range of classes and
attempts to give thorough coverage including fall-back methods to detect invalid
or unsupported combinations. The ambiguous method selection will often end
in an error message, making the reported ambiguities irrelevant. In the process,
it provides a rich testbed for detecting ambiguous methods.

The computations and reporting are necessarily nontrivial. There may be
a large number of subclasses, particularly if basic classes such as "vector" are
included in some method signatures. The computations begin by identifying,
for each argument in the signature, all the classes that are subclasses of the
class in one or more of the method signatures. The complete set of relevant
signatures is the “outer product” of the set of classes for the various arguments.
This may be a very large set, but in fact only one signature is retained from
each subset of equivalent signatures. Signatures are equivalent if they have the
same inheritance pattern.

For example, suppose f() is a function of two arguments with two methods
defined:

setMethod(f,

c("dMatrix", "nMatrix"),

....)

setMethod(f,

c("sparseMatrix", "nsparseMatrix"),

....)

These are classes in the Matrix package, each with a number of subclasses. All
the subclasses of "dMatrix" or of "sparseMatrix" are relevant for the first
argument, and all the subclasses of "nMatrix" or of "nsparseMatrix" for the
second. In principle all pairs might be tested, for a total of 22 * 73 == 1606
possibilities in the version of Matrix examined. In fact, each pair of a subclass of
"dMatrix" and of "nsparseMatrix" triggers the same inheritance computation,
so we only need one representation of each pattern, 4 in total. The computa-
tions for testInheritedMethods() begin by finding all the equivalences among
combinations of subclasses and retaining one of each set for testing. In addition,
one normally does not need to consider virtual classes, so long as these have at
least one non-virtual subclass, so these are eliminated in advance.

With a large number of methods there will still be a substantial number
of distinct computations. For example, the operator "+" had 529 combina-
tions to test from direct and group methods. To provide a manageable but

13

detailed record of ambiguities, testInheritedMethods() returns an object of
class "MethodSelectionReport". The show() method for printing the class
itemizes any ambiguities found. Slots in the class record detailed information,
each of which is a vector of the corresponding attribute of the condition ob-
ject passed to the calling handler when the individual ambiguity is detected:
"target" for the target signature; "candidates" for all the matching best sig-
natures; "selected" for the signature selected; and "note" recording any of the
heuristics used to resolve ambiguities. Signatures are returned in the form of sin-
gle strings, for ease of manipulation. For example, the signature c("dMatrix",
"sparseMatrix" is represented by "dMatrix#sparseMatrix".

Appendix: Failure of Superclass Consistency

As may be intuitively obvious, classes can be defined that individually have
superclass definitions consistent with the principles, but which when combined
produce a new class that is no longer consistent.

A counter-example to preserving the ordering of direct superclasses is trivial.
Here is some R code, followed by a plot of the superclass inheritance.

setClass("C", contains = c("A", "B"))

setClass("D", contains = c("B", "A"))

setClass("Ex1", contains = c("C", "D"))

Ex1

C D

A B

(Classes not defined in the example are assumed to have trivial definitions, with
no superclasses.)

The conflict here is a basic one: Classes "C" and "D" take opposite views
on the relative closeness of their two direct superclasses. No class can extend
both "C" and "D" in a consistent way. I have not yet encountered examples in
practice, but it’s not hard to imagine them, particularly if "C" and "D" came
from different packages.

Ambiguities in the generational distance to a superclass are much more likely,
but fortunately not usually fatal for superclass consistency. An artificial example
that is fatal is the following:

setClass("C", contains = "A")

setClass("D", contains = "C")

14

setClass("Ex2", contains = c("D", "A", "B"))

Ex2

D

A

B

C

The generation distance between "Ex2" and "A" is either 1 or 3, depending on
which route we take. In this simple example one might argue that the direct
inheritance should prevail, but an analogous example can be constructed with
two indirect relationships.

There is no ordering of class "Ex2" and its superclasses in which all the
pairwise orderings are preserved. Class "A" must come at the end to preserve the
ordering of "D" and its superclasses, but then the order of the direct superclasses
of "Ex2" is not preserved.

Ambiguity in superclass distances that does not prevent finding a consistent
ordering is quite common. The stats package in the core R software includes
S3 classes for univariate and multivariate time series. If the user calls the ts()
function with a matrix of data, the object returned has "mts" as its main class.
The objects created have attributes corresponding to both matrices and time
series. An S4 definition for "mts" then has the definition and class inheritance
graph:

setClass("mts", contains = c("matrix", "ts"))

15

mts

matrix ts

array oldClass

structure

vector

The class definition itself simply states the obvious: objects from class "mts"
have all the properties of both matrices and time series. The inheritance from
class "structure" is the interesting feature of the graph.

Both "matrix" and "ts" are “structure” classes in the classic sense of the S
language: objects from the classes consist of a vector with additional properties
that define its layout, independent of the type or values in the vector. For this
reason, class "structure" appears twice in the inheritance of "mts". Class
"ts" has "structure" as a direct superclass. Because "matrix" is defined as
a specialization of general multi-way arrays, however, it extends "structure"
through "array". The two paths from "mts" to "structure" have distance
3 and 4, but the ordering produced for the superclasses of "mts" is consistent
with both direct superclasses.

> extends("mts")

[1] "mts" "matrix" "ts"

[4] "array" "structure" "oldClass"

[7] "vector"

> extends("matrix")

[1] "matrix" "array" "structure"

[4] "vector"

> extends("ts")

[1] "ts" "structure" "oldClass"

[4] "vector"

When the superclass order of a class is inconsistent with that for one of its
superclasses, the new class may fail to inherit methods as expected, even if no

16

new methods are written. With a reversal of order in the two superclasses of
class "Ex1" on page 14, the problem is easy to see. Suppose f() is a generic
function of one argument, with methods for both classes "A" and "B". A pro-
grammer writing code for class "C" would expect to inherit the former method,
a programmer writing for class "D" the latter. Whatever way the superclasses
of class "Ex1" are ordered, some methods may not be inherited as expected.

Somewhat subtler but similar problems arise from the definition of class
"Ex2" on page 14. Ignoring one or the other occurrence of "D" gives the alter-
native results for extends("EX2").

EX2 C D C1 A

EX2 C C1 A D

In the first ordering, methods defined for class "D" will be chosen in preference
to those defined for either "C1" or "A"; in the second ordering the opposite is
true.

In this example, neither ordering can be considered “correct”. Both give
potentially surprising results for the user. The second ordering means that
methods defined for a direct superclass, "D", will not be chosen in preference
to, say, a method defined for the indirect superclass "A".

The defect in the first ordering is more subtle, but consider a programmer
writing methods for class "C". Suppose the programmer needs to override a
method for class "D", say because it throws an error. If there is a suitable
method for class "A", the programmer assumes that this method will be chosen.
But it will not, if the object comes from class "EX2", because the bad method
from "D" will now be chosen. The situation in this case is admittedly more
subtle, but just for that reason it can potentially produce more confusing errors.
And the situation is not as obscure as one might think. Multiple occurrences
of a class may occur when the class in question is a form of “base” class for
other classes—one to which method selection falls through if no specific class is
intended. Just in this situation the defect described here can occur.

The example here is fairly minimal. If class "D" had superclasses itself,
these would be affected similarly, and if more than one class had inconsistent
inheritance, consequences could be further complicated.

References

J. M. Chambers. Software for Data Analysis: Programming with R. Springer,
New York, 2008. ISBN 978-0-387-75935-7.

J. M. Chambers. Programming with Data: A Guide to the S Language. Springer,
New York, 1998.

J. M. Chambers and T. J. Hastie. Statistical Models in S. Chapman & Hall,
London, 1992. ISBN 9780412830402.

17

A. Shalit. The Dylan Reference Manual. Addison-Wesley Developers Press,
Reading, Mass., 1996.

18

	The Starting Point
	Inheritance from S3 Classes
	Inheritance from Object Types
	Combining S4 and S3 Methods
	Superclass Ordering
	Selecting Inherited Methods

